MATEMATICAS

Desempeño:  
Reconoce el entorno básico de geogebra a través de la interacción de sus herramientas para construir triángulos semejantes y rectángulos




























Gifs Animados de Hola, Hi y Hello - Imagenes Animadas de Hola, Hi y Hello













Método gráfico de resolución de sistemas 


Cada una de las ecuaciones que forman un sistema lineal de dos ecuaciones con dos incógnitas es la de una función de primer grado, es decir, una recta. El método gráfico para resolver este tipo de sistemas consiste, por tanto, en representar en unos ejes cartesianos, o sistema de coordenadas, ambas rectas y comprobar si se cortan y, si es así, dónde. Esta última afirmación contiene la filosofía del proceso de discusión de un sistema por el método gráfico. Hay que tener en cuenta, que, en el plano, dos rectas sólo pueden tener tres posiciones relativas (entre sí): se cortan en un punto, son paralelas o son coincidentes (la misma recta). Si las dos rectas se cortan en un punto, las coordenadas de éste son el par (x, y) que conforman la única solución del sistema, ya que son los únicos valores de ambas incógnitas que satisfacen las dos ecuaciones del sistema, por lo tanto, el mismo es compatible determinado. Si las dos rectas son paralelas, no tienen ningún punto en común, por lo que no hay ningún par de números que representen a un punto que esté en ambas rectas, es decir, que satisfaga las dos ecuaciones del sistema a la vez, por lo que éste será incompatible, o sea sin solución. Por último, si ambas rectas son coincidentes, hay infinitos puntos que pertenecen a ambas, lo cual nos indica que hay infinitas soluciones del sistema (todos los puntos de las rectas), luego éste será compatible indeterminado.
El proceso de resolución de un sistema de ecuaciones mediante el método gráfico se resume en las siguientes fases:
  1. Se despeja la incógnita y en ambas ecuaciones.
  2. Se construye, para cada una de las dos funciones de primer grado obtenidas, la tabla de valores correspondientes.
  3. Se representan gráficamente ambas rectas en los ejes coordenados.
  4. En este último paso hay tres posibilidades:
    1. Si ambas rectas se cortan, las coordenadas del punto de corte son los únicos valores de las incógnitas x e ySistema compatible determinado.
    2. Si ambas rectas son coincidentes, el sistema tiene infinitas soluciones que son las respectivas coordenadas de todos los puntos de esa recta en la que coinciden ambas. Sistema compatible indeterminado.
    3. Si ambas rectas son paralelas, el sistema no tiene solución. Sistema incompatible.

Veamos, por última vez, el ejemplo visto en los métodos analíticos para resolverlo gráficamente y comprobar que tiene, se use el método que se use, la misma solución. recordemos de nuevo el enunciado:
Entre Ana y Sergio tienen 600 euros, pero Sergio tiene el doble de euros que Ana. ¿Cuánto dinero tiene cada uno?.
Llamemos x al número de euros de Ana e y al de Sergio. Vamos a expresar las condiciones del problema mediante ecuaciones: Si los dos tienen 600 euros, esto nos proporciona la ecuación x + y = 600. Si Sergio tiene el doble de euros que Ana, tendremos que y = 2x. Ambas ecuaciones juntas forman el siguiente sistema:

   x + y = 600
2x - y = 0

Para resolver el sistema por el método gráfico despejamos la incógnita y en ambas ecuaciones y tendremos:

      y = -x + 600
y = 2x
Vamos ahora, para poder representar ambas rectas, a calcular sus tablas de valores:

y = -x + 600y = 2x
xyxy
200400100200
6000200400

Con estas tablas de valores para las dos rectas y eligiendo las escalas apropiadas en los ejes OX y OY, podemos ya representar gráficamente:


Si observamos la gráfica, vemos claramente que las dos rectas se cortan en el punto (200, 400), luego la solución del sistema es x = 200 e y = 400. Por tanto, la respuesta al problema planteado es que Ana tiene 200 euros y Sergio tiene 400 euros, es decir, el mismo resultado, evidentemente, que habíamos obtenido con los tres métodos analíticos.

adiccion y sustraccion 


El metodo consiste en sumar combinaciones lineales de las ecuaciones hasta que una incognita te quede sola. A modo de ejemplo uso tu ejercicio 

3x - 2y = -2 
4x + 3y = 5 

--Multiplicamos la primera ecuacion por 3 y y la segunda por 2 ( no se altera la solucion del sistema). 
El nuevo sistema te queda 

9x - 6y = -6 
8x + 6y = 10 

--Sumamos la primera ecuacion con la segunda 

9x - 6y = -6 

8x + 6y = 10 
-------------------- 
17x + 0y = 4 

==> x = 4 / 17 

Sustituis ese valor de x en alguno de las ecuaciones por ejemplo la primera ==> 36 / 7 - 6y = -6 
Despejamos la y ==> 6y = 6 + 36 / 7 ==> y = 13 / 7




Métodos analíticos de resolución: Sustitución
Antes de centrarnos en el método de sustitución, vamos a hablar de algunas generalidades sobre la resolución de los sistemas de ecuaciones. En primer lugar, hay que saber que, en realidad, resolver adecuadamente un sistema es un proceso que consta de dos fases: discusión y resolución. La discusión consiste en clasificar el sistema según el esquema visto en la sección anterior, es decir, analizar si el sistema tiene o no solución y, en caso de tenerla, cuántas soluciones. Por otro lado, para la resolución, una vez comprobado que el sistema tiene solución, se utilizará uno de los métodos que en esta Unidad se describen.
En principio, por tanto, la discusión es un proceso anterior al de resolución. Ahora bien, estas fases sólo se realizan en ese orden cuando se utilizan métodos para la resolución de los sistemas distintos de los que veremos en este nivel y que, por tanto, quedan fuera del ámbito de este curso. Por ello, en este momento, ambos procesos, la discusión y la resolución del sistema, se harán de manera simultánea.
En cuanto a la resolución, los métodos que veremos en esta Unidad, que no son todos como ha quedado indicado más arriba, se dividen en dos grupos: métodos analíticos y método gráfico. Los métodos analíticos son los que permiten la resolución (y discusión) del sistema sin necesidad de recurrir a su representación gráfica, es decir, mediante la utilización de la equivalencia de sistemas, ya vista anteriormente, y simples operaciones aritméticas. Los métodos analíticos, que iremos viendo uno a uno, son tres:sustituciónigualación y reducción. Por contra, el método gráfico (sólo hay uno), consiste, como su propio nombre indica) en resolver (y discutir) el sistema mediante la representación gráfica de sus ecuaciones.
De ahora en adelante, iremos viendo, uno por uno, los diferentes métodos de resolución de los sistemas de ecuaciones y, al mismo tiempo, cómo, simultáneamente, se puede ir haciendo, en cada caso, la discusión del sistema. Vamos a empezar pues con elmétodo de sustitución:

De manera esquemática, para resolver un sistema lineal de dos ecuaciones con dos incógnitas por el método de sustitución hay que seguir las siguientes fases:
  1. Se despeja una de las incógnitas en una cualquiera de las ecuaciones.
  2. Se sustituye la expresión obtenida en la otra ecuación y se resuelve la ecuación de primer grado en una incógnita que resulta de esta sustitución.
  3. Una vez calculada la primera incógnita, se calcula la otra en la ecuación despejada obtenida en el primer paso.
Evidentemente, aún cuando la incógnita que se va a despejar en el primer paso puede ser cualquiera y de cualquier ecuación, es mejor, por la facilidad de los cálculos posteriores, hacer una buena elección de ambas, incógnita y ecuación. Queremos decir que será más fácil operar después si, por ejemplo, se elige una incógnita en una ecuación en la que "no tenga" coeficiente (es decir, que su coeficiente sea 1), ya que, en ese caso, podremos evitar el cálculo con fracciones.

Hemos mencionado, en los párrafos anteriores, que, de manera simultánea, se puede ir haciendo la discusión del sistema. ¿Cómo?. Pues bien, si en el proceso de sustituir la incógnita despejada en el primer paso en la otra ecuación e intentar resolverla nos quedase una expresión del tipo "0 = 0", o "K = K", siendo K un número cualquiera (por ejemplo, 4 = 4), tendremos que el sistema es compatible indeterminado y tiene infinitas soluciones. Esto se debe a que, en ese caso, una de las ecuaciones es múltiplo de la otra y el sistema quedaría reducido a una sola ecuación, con lo que habría infinitos pares de números (x, y) que la cumplirían. Este tipo de ecuación (0 = 0) se llama ecuación trivial.
Por otro lado, si la ecuación que nos resultase en el proceso anteriormente explicado fuera de la forma "K = 0", siendo K cualquier número distinto de 0, tendremos que el sistema es incompatible por lo que, en ese caso, no tiene solución. Esto es claro por la imposibilidad de la expresión aparecida. Este tipo de ecuación (K = 0) se llama ecuación degenerada. No habría, por tanto, ningún par de números (x, y) que cumplieran ambas ecuaciones del sistema.
Por último, si no nos encontramos, al resolver el sistema, ninguna de los tipos antes descritos de ecuaciones (triviales y degeneradas) y llegamos, al final de su resolución, a un valor para la incógnita x y a otro para la y, estos dos valores formarán el par (x, y) que nos da la solución del sistema y éste tendrá, por tanto una única solución y será un sistema compatible determinado.
Todas las aclaraciones de los párrafos anteriores sobre la discusión de los sistemas son válidas, no sólo para el método de sustitución, sino también para los otros dos métodos de tipo analítico, igualación y reducción, que veremos en las secciones siguientes.
Veamos ahora un ejemplo de resolución de un sistema mediante el método de sustitución:
Entre Ana y Sergio tienen 600 euros, pero Sergio tiene el doble de euros que Ana. ¿Cuánto dinero tiene cada uno?.

Llamemos x al número de euros de Ana e y al de Sergio. Vamos a expresar las condiciones del problema mediante ecuaciones: Si los dos tienen 600 euros, esto nos proporciona la ecuación x + y = 600. Si Sergio tiene el doble de euros que Ana, tendremos que y = 2x. Ambas ecuaciones juntas forman el siguiente sistema:

x + y = 600
   y = 2x

Vamos a resolver el sistema por el método de sustitución, ya que en la 2ª ecuación hay una incógnita, la y, ya despejada. Sustituimos el valor de y = 2x en la primera ecuación, con lo que tendremos:

x + 2x = 600 ⇒ 3x = 600 ⇒ x = 600/3 ⇒ x = 200

Ahora sustituimos x = 200 en la ecuación en la que estaba despejada la y, con lo que tendremos:

y = 2x ⇒ y = 400 

Por tanto, la solución al problema planteado es que Ana tiene 200 euros y Sergio tiene 400 euros. 



No hay comentarios:

Publicar un comentario